top of page

Know how to use Group Section.

Public·19 members

Itzykson Zuber Quantum Field Theory Djvu 30

U(N) Gauge Theory and lattice strings, by Ivan K. Kostov, 26 pages, 8figures not included, available by mail upon request, T93-079 (talk atthe Workshop on string theory, gauge theory and quantum gravity, 28-29April 1993, Trieste, Italy), available as arXiv:hep-th/9308158.

Itzykson Zuber Quantum Field Theory Djvu 30

Download File:

Edward Witten, Fermion quantum numbers in Kaluza-Klein theory, Shelter Island II, Proceedings: Quantum Field Theory and the Fundamental Problems of Physics, ed. T. Appelquist et al, MIT Press, 1985, pp. 227-277.

Steve Yunck / NSF, Cerenkov light passing through the IceCube neutrinodetector, _concepts/ceren_hiresDarwin Rianto / NSF, Comparison of AMANDA and IceCube, _concepts/icecubeencomp_300Robert G. Stokstad / NSF, South Pole Station, _300Ice Cube turns up the heat, The Antarctic Sun, January 29, 2006, -2006/contentHandler.cfm?id=959Francis Halzen, Ice fishing for neutrinos, -fishing.htmlKatie Yurkiewicz, Extreme neutrinos, Symmetry, volume 1 issue 1, November 2004, =1000014M. Ackermann et al, Search for extraterrestrial point sources ofhigh energy neutrinos with AMANDA-II using data collected in 2000-2002,available as arXiv:astro-ph/0412347.AMANDA II Project, Welcome to IceCube, Davide L. Ferrario, Periodic orbits for the 60-body problem, ferrario/mov/index.htmlDavide L. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical n-body problem. Invent. Math.155 (2004), 305-362.John Baez, Derek Wise and Alissa Crans, Exotic statistics for stringsin 4d BF theory, available as arXiv:gr-qc/0603085.John Baez and Alejandro Perez, Quantization of strings and branes coupled to BF theory, available as arXiv:gr-qc/0605087.Phillipp de Sousa Gerbert, On spin and (quantum) gravity in 2+1dimensions, Nuclear Physics B346 (1990), 440-472.Laurent Freidel, Jerzy Kowalski-Glikman and Lee Smolin, 2+1 gravity and doubly special relativity, Phys. Rev. D69 (2004) 044001. Also available as arXiv:hep-th/0307085.

Institute for Quantum Computing (IQC), Jonathan Baugh, Osama Moussa, Colm A. Ryan, Raymond Laflamme, Chandrasekhar Ramanathan, Timothy F. Havel and David G. Cory,Solid-state NMR three-qubit homonuclear system for quantum information processing: control and characterization, Phys. Rev. A 73 (2006), 022305. Also available as quant-ph/0510115.Artur Ekert, Cracking codes, part II, Plus Magazine, IQC, Free-space quantum key distribution, _space.phpWikipedia, Liouville's theorem (Hamiltonian), 's_theorem_(Hamiltonian)Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.John Preskill, Quantum computation - lecture notes, referencesetc. at John Preskill, Fault-tolerant quantum computation, to appear in"Introduction to Quantum Computation", eds. H.-K. Lo,S. Popescu, and T. P. Spiller. Also available as quant-ph/9712048.Peter Shor, Fault-tolerant quantum computation, 37th Symposium onFoundations of Computing, IEEE Computer Society Press, 1996,pp. 56-65. Also available as quant-ph/9605011.Dorit Aharonov and Michael Ben-Or, Fault-tolerant quantumcomputation with constant error rate, available as quant-ph/9906129.Barbara M. Terhal and Guido Burkard, Fault-tolerant quantumcomputation for local non-markovian noise, Phys. Rev. A 71, 012336(2005). Also available as quant-ph/0402104.H. S. Leff and Andrew F. Rex, editors, Maxwell's Demon: Entropy,Information and Computing, Institute of Physics Publishing, 1990.Scott Aaronson, NP-complete problems and physical reality, ACMSIGACT News, March 2005. Also available as quant-ph/0502072.Aristide Baratin and Laurent Freidel, Hidden quantum gravityin 4d Feynman diagrams: emergence of spin foams.Aristide Baratin and Laurent Freidel, Hidden quantum gravity in 3dFeynman diagrams. Available as arXiv:gr-qc/0604016.Laurent Freidel, Jerzy Kowalski-Glikman and Artem Starodubtsev,Particles as Wilson lines in the gravitational field, available as arXiv:gr-qc/0607014. John Baez, An introduction to spin foam models of BF theory and quantum gravity, in Geometry and Quantum Physics, eds. Helmut Gausterer and Harald Grosse, Lecture Notes in Physics, Springer-Verlag, Berlin, 2000, pp. 25-93. Also available as arXiv:gr-qc/9905087.John Baez and Urs Schreiber, Higher gauge theory, to appear in thevolume honoring Ross Street's 60th birthday, available as arXiv:math.DG/0511710.Toby Bartels, Higher Gauge Theory I: 2-bundles, available as arXiv:math.CT/0410328.John Baez, Alissa Crans and Danny Stevenson, Chicagolectures on higher gauge theory, available at John Baez, Higher gauge theory, 2006 Barrett lectures, availableat John Baez, Higher-dimensional algebra: a language for quantumspacetime, colloquium talk at Perimeter Institute,available at _spacetime/Sarma, Freedman, and Nayak, Topological quantumcomputation, Physics Today (July 2006).Topological quantum computing at Indiana University, Michael Freedman, Michael Larsen, and Zhenghan Wang, A modular functor which is universal for quantum computation, available as quant-ph/0001108.Parsa Bonderson, Alexei Kitaev and Kirill Shtengel, Detectingnon-abelian statistics in the ν = 5/2 fractional quantum Hallstate, Phys. Rev. Lett. 96 (2006) 016803. Also available as cond-mat/0508616.Charles Day, Devices based on the fractional quantum Hall effect mayfulfill the promise of quantum computing, Physics Today (October 2005),also available at -58/iss-10/p21.htmlK. Eric Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation, John Wiley and Sons, New York, 1992.Ralph C. Merkle, Two types of mechanical reversible logic,Nanotechnology 4 (1993), 114-131. Also available at

National Curve Bank, Goodstein's theorem, Rudy Rucker, Infinity and the Mind: The Science and Philosophy of the Infinite, Princeton University Press, Princeton, 2004.Wikipedia, Ordinal numbers, _numberOrdinal arithmetic, _arithmeticLarge countable ordinals, _countable_ordinalsGerhard Gentzen, Die Widerspruchfreiheit der reinen Zahlentheorie,Mathematische Annalen 112 (1936), 493-565. Translated as "The consistency of arithmetic" in M. E. Szabo ed., The Collected Works of Gerhard Gentzen, North-Holland, Amsterdam, 1969.R. Goodstein, On the restricted ordinal theorem, Journal of Symbolic Logic, 9 (1944), 33-41.L. Kirby and J. Paris, Accessible independence results for Peano arithmetic, Bull. London. Math. Soc. 14 (1982), 285-93. Alan M. Turing, Systems of logic defined by ordinals, Proc. London Math. Soc., Series 2, 45 (1939), 161-228.Jeremy Avigad and Erich H. Reck, "Clarifying the nature of theinfinite": the development of metamathematics and proof theory,Carnegie-Mellon Technical Report CMU-PHIL-120, 2001. Also available as Solomon Feferman, Highlights in proof theory, in Proof Theory,eds. V. F. Hendricks et al, Kluwer, Dordrecht (2000), pp. 11-31.Also available at feferman/papers.htmlSolomon Feferman, Proof theory since 1960, prepared for the Encyclopedia of Philosophy Supplement, Macmillan Publishing Co., New York. Also available at feferman/papers.htmlJean-Yves Girard, Y. Lafont and P. Taylor, Proofs and Types, CambridgeTracts in Theoretical Computer Science 7, Cambridge U. Press, 1989.Also available at pt/stable/Proofs+Types.htmlTorkel Franzen, Inexhaustibility: A Non-Exhaustive Treatment,Lecture Notes in Logic 16, A. K. Peters, Ltd., 2004.Benno Artmann, About the cover: the mathematical conquest ofthe third dimension, Bulletin of the AMS, 43 (2006), 231-235.Also available at -43-02/S0273-0979-06-01111-6/Euclid, Elements, Book XIII, Proposition 16, online versiondue to David Joyce at djoyce/java/elements/bookXIII/propXIII16.htmlEuclid, Elements, Book XIII, Proposition 18, online versiondue to David Joyce at djoyce/java/elements/bookXIII/propXIII18.htmlBill Casselman, One of the oldest extant diagrams from Euclid, cass/Euclid/papyrus/Thomas L. Heath, editor, Euclid's Elements, chap. V: the text,Cambridge U. Press, Cambridge, 1925. Also available at -bin/ptext?lookup=Euc.+5Menso Folkerts, Euclid's Elements in Medieval Europe, cass/Euclid/folkerts/folkerts.htmlThomas L. Heath, editor, Euclid's Elements, chap. VI: the scholia,Cambridge U. Press, Cambridge, 1925. Also available at -bin/ptext?lookup=Euc.+6Benno Artmann, Antike Darstellungen des Ikosaeders, Mitt. DMV 13 (2005), 45-50. (Here the drawing of the icosahedron in Euclid's elements is analysed in detail.)A. E. Taylor, Plato: the Man and His Work, Dover Books, NewYork, 2001, page 322. (This discusses traditions concerning Theaetetus and Platonic solids.)Euclid, Elementa: Libri XI-XIII cum appendicibus, postscript by Johan Ludvig Heiberg, edited by Euangelos S. Stamatis, Teubner BSB, Leipzig, 1969. (Apparently this contains information on the scholium in book XIII of the Elements.)John Baez and James Dolan, From finite sets to Feynman diagrams, in Mathematics Unlimited - 2001 and Beyond, vol. 1, eds. Björn Engquist and Wilfried Schmid, Springer, Berlin, 2001, pp. 29-50.John Baez and Derek Wise, Quantization and Categorification,Quantum Gravity Seminar lecture notes, available at: -fall2003/ -winter2004/ -spring2004/Simon Byrne, On Groupoids and Stuff, honors thesis, Macquarie University, 2005, available at street/ByrneHons.pdf and -spring2004/ByrneHons.pdfJeffrey Morton, Categorified algebra and quantum mechanics, Theory and Application of Categories 16 (2006), 785-854. Availableat -29abs.html;also available as arXiv:math.QA/0601458.Justin T. Miller, On the Independence of Goodstein's Theorem,Masters thesis, University of Arizona, 2001. Also available as miller/thesis/thesis.htmlHilbert Levitz, Transfinite ordinals and their notations: Forthe uninitiated, available at levitz/research.htmlKurt Schütte, Kennzeichnung von Orgnungszahlen durch rekursiverklärte Funktionen, Math. Ann 127 (1954), 15-32.Anton Setzer, An introduction to well-ordering proofs in Martin-Löf's type theory, in Twenty-Five Years of Constructive Type Theory, eds. G. Sambin and J. Smith, Clarendon Press, Oxford, 1998, pp. 245-263.Also available at csetzer/index.htmlAnton Setzer, Ordinal systems, in Sets and Proofs, Cambridge U. Press, Cambridge, 2011, pp. 301-331. Also available at csetzer/index.htmlJean H. Gallier, What's so special about Kruskal's theorem andthe ordinal Γ0? A survey of some results in proof theory, sec. 7, A glimpse at Veblen hierarchies, Ann. Pure Appl. Logic 53(1991), 199-260. Also available at jean/gallier-old-pubs.htmlLarry W. Miller, Normal functions and constructive ordinal notations,J. Symb. Log. 41 (1976), 439-459.Peter Hancock, Ordinal notation systems, -notations.htmlHarold Simmons, Abstracts of papers and notes, hsimmons/DOCUMENTS/papersandnotes.html 350c69d7ab